surprising since the backbone C(11)-C(1)-N(1) Council for provision of the diffractometer. The calmarked on Fig. 1.

There are no unusually short intermolecular contacts except for the hydrogen-bonded distances O(37)-N(2)(2.71 Å) and O(37)-H(1) (1.88 Å) (for necessary sym- Motherwell. metry transformations, see above).

We are grateful to the Medical Research Council for financial support and to the Science Research CROOK, S. & SYKES, P. (1977). In preparation.

C(2)-C(21) is helical. Relevant bond lengths are culations were performed on the Cambridge University IBM 370/165 computer with the SHELX series of programs written by Dr G. M. Sheldrick. The figures were drawn with PLUTO written by Dr W. D. S.

Reference

SHORT COMMUNICATIONS

Contributions intended for publication under this heading should be expressly so marked; they should not exceed about 1000 words; they should be forwarded in the usual way to the appropriate Co-editor; they will be published as speedily as possible.

Acta Cryst. (1977). B33, 630

The crystal and molecular structure of 2-acetamido-2,3-dideoxy-D-threo-hex-2-enono-1,4-lactone, C₈H₁₁NO₅. Erratum. By Ž. Ružić-Toroš and B. Kojić-Prodić, 'Rudjer Bošković' Institute, PO Box 1016, 41001 Zagreb, Yugoslavia

(Received 11 October 1976; accepted 11 October 1976)

Errors in Tables 2, 3, 5 and 6 in the paper by Ružić-Toroš & Kojić-Prodić [Acta Cryst. (1976), B32, 2333-2336] are corrected.

The signs of some parameters should be the opposite of those stated in the paper, as follows: Table 2, columns x, U_{12} and U_{23} ; Table 3, column x; and all the values in Tables 5 and 6.

Acta Cryst. (1977). B33. 630-632

Structure cristalline du tétramétaphosphate de praséodyme-ammonium, PrNH₄P₄O₁₂. Données cristallographiques de NdNH₄P₄O₁₂. Par René Masse, Jean-Claude Guitel et André Durif, Laboratoire des Ravons X, CNRS, 166 X, 38042 Grenoble Cédex, France

(Reçu le 13 septembre 1976, accepté le 4 octobre 1976)

The unit cell of PrNH₄P₄O₁₂ is monoclinic with a = 7.916 (5), b = 12.647 (10), c = 10.672 (9) Å, $\beta = 110.34$ (8)°, Z = 4. The space group is C^{2}/c . The crystal structure was solved from single-crystal diffractometer data by the Patterson method and was refined by least squares. P4O12 ring anions are centrosymmetric. NdNH4P4O12 is isotypic with $PrNH_4P_4O_{12}$.

Introduction

Tableau 1. Coordonnées cristallographiques des atomes

On chauffe à 200°C quelques grammes de Pr₂O₃ ou PrCl₃ dans 20 g de phosphate biammonique, $(NH_4)_2HPO_4$. Puis on porte le tout à 400 °C pendant 24 h. On précipite ainsi des cristaux de forme allongée de formule $PrNH_4P_4O_{12}$. Si l'on part de Nd₂O₃, on obtient des cristaux de même morphologie, de formule chimique $NdNH_4P_4O_{12}$.

La maille cristalline de PrNH₄P₄O₁₂ a été déterminée par la méthode de Weissenberg et affinée à partir de données enregistrées au diffractomètre automatique.

Les intensités diffractées ont été mesurées à l'aide d'un diffractomètre automatique Philips, à la longueur d'onde de

	Х	.ν	z	<i>B</i> (Å ²)
Pr	0,0	0,12086 (5)	0,25	0,62 (1)
P(1)	0.4617(3)	0,1690 (2)	0.5024 (2)	0,65 (2)
P(2)	0,2855 (3)	0,9790 (2)	0.5611(2)	0,62 (2)
O(L1)	0,4058 (7)	0,8756 (5)	0,5681 (6)	1,17(10)
O(L2)	0,4312(7)	0,0722 (4)	0,5885(5)	0,95 (10)
O(E11)	0,2933 (8)	0,1986 (4)	0,3907 (6)	1.07 (10)
O(E12)	0,5610(8)	0,2523 (5)	0,5983 (6)	1,14 (10)
O(E21)	0,2238 (8)	0,9727 (5)	0.6763 (6)	1.09 (10)
O(E22)	0,1518(8)	-0,0100(5)	0,4244 (6)	1,16(10)
NH.	0.0	0.8189 (8)	0.25	1,89 (20)

l'argent avec monochromateur ($\lambda = 0,5608$ Å). Dimensions du cristal: 0,10 mm × 0,16 mm × 0,16 mm; domaine de mesure: 3°-25° (θ); mode de mesure: balayage: ω , largeur de balayage: 1,2°, vitesse de balayage: 0,04° s⁻¹; nombre de réflexions mesurées: 1295; nombre de réflexions utilisées pour l'affinement ($F_{obs} > 10$): 1068.

Une sommation de Patterson tridimensionnelle a permis de localiser les atomes de praséodyme en position spéciale 4(e) du groupe spatial C2/c. A partir de cette position, une sommation de Fourier révèle les sites P(1) et P(2) du phosphore et l'ensemble des atomes d'oxygène. La position de l'ion NH⁴₄ est obtenue par une Fourier-différence. Un affinement de la structure à partir de 1068 réflexions conduit à un facteur $R_F = 4,5\%$ (Prewitt, 1966). Les Tableaux 1, 2 et 3 résument les résultats obtenus.*

* La liste des facteurs de structure a été déposée au dépôt d'archives de la British Library Lending Division (Supplementary Publication No. SUP 32188: 12 pp.). On peut en obtenir des copies en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 INZ, Angleterre.

Tableau 2. Facteurs de température anisotropes $\beta_{ii} \times 10^4$

	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Pr	29(1)	7 (03)	18 (06)	0	8 (05)	0
P(1)	27 (3)	9(1)	19 (2)	-1(1)	7 (2)	-1(1)
P(2)	27 (3)	9(1)	16(2)	0(1)	6 (2)	3 (1)
O(L1)	51 (9)	18(3)	38 (5)	12 (5)	28 (6)	1 (4)
O(L2)	50 (9)	11(3)	24 (5)	-14 (4)	8(6)	-4 (3)
O(E11)	54 (10)	10(3)	28 (6)	-2(5)	3 (6)	4 (3)
O(E12)	54 (10)	13 (3)	30 (6)	-6 (5)	8 (6)	-5 (4)
O(E21)	49 (10)	24 (4)	24 (6)	-1 (5)	24 (6)	-1 (4)
O(E22)	73 (11)	18(3)	8(5)	-1(5)	-5(6)	6 (3)
NH₄	130 (25)	14 (6)	36 (11)	0	6 (13)	0

	$U(\rm \AA)$	$ heta_a$ (°)	$ heta_b$ (°)	$ heta_c$ (°)
Pr	0.096	97	90	13
	0.090	7	90	103
	0.079	90	0	90
P(1)	0,102	103	108	19
	0,088	27	117	104
	0,081	67	33	77
P(2)	0,101	109	48	42
.,	0,088	20	83	91
	0,075	82	42	132
O(L1)	0,150	62	65	56
	0,126	108	137	48
	0,076	34	121	119
O(L2)	0,138	31	121	104
	0,115	103	105	17
	0,061	62	36	81
O(E11)	0,147	143	76	38
	0,109	54	77	58
	0,084	86	20	109
O(E12)	0,137	140	97	31
	0,127	55	124	69
	0,090	74	34	68
O(E21)	0,139	99	16	99
	0,128	52	74	61
	0,076	141	89	31
O(E22)	0,162	16	102	120
	0,124	75	20	83
	0,050	83	105	31
NH₄	0,207	10	90	120
	0,133	80	90	30
	0,107	90	0	90

Tableau 3. Axes principaux des ellipsoïdes de vibration

thermique

Description de la structure

La structure cristalline de $PrNH_4P_4O_{12}$ est constituée de cycles tétramétaphosphates P_4O_{12} situés en moyenne à des cotes 0 et 0,5 suivant c. Les plans de ces cycles sont

Fig. 1. Projection de $PrNH_4P_4O_{12}$ suivant c.

Tableau 4. D	istances interatom	iques (Å) dans le	cycle P ₄ O ₁₂	Tab	leau 7. I	Dépou	illement a	lu diagram	me de p	oudre d	de
$P(1) = O(L_1)$	1,592(7)	$P(2) = O(L_1)$	1,604 (7)				PrNH ₄	P_4O_{12}			
P(1) - O(L2)	1,598 (6)	P(2) - O(L2)	1,603 (6)	L L I	d	4	1.	h -	<i>d</i> .	<i>d</i> .	1.
P(1) - O(E(1))	1,494 (5)	P(2) - O(E21)	1,474 (7)	πκι	uobs	u_{calc}	lobs	пкі	u_{obs}	<i>u</i> calc	Tobs
P(1) - O(E12)	1,488(6)	P(2) - O(E22)	1,481(5)	011		7,83		042	2,665	2,665	2
	-, (-)		-, - (-,	110		6,38		113		2,643	
P(1) - P(2)	2,953 (3)	P(1) - P(2)	2,985 (3)	020	6,30	6,30	100	033		2,611	
., .,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_,	021	5,32	5,33	3,5	202		2,573	
Tableau 5 4	ualan autua waataa		(0) Jame I.	002		5,0		212		2,521	
Tableau 5. Al	ngies entre vecteur	s interatomiques	(°) dans le	111	4,76	4,76	2	231		2,510	
	cycle P ₄	0 ₁₂		012	4,65	4,65	4,5	004		2,500	
		104.0 (2)		121		3,985		123		2,485	
0(1	L1) - P(1) - O(L2)	104,8 (3)		022		3,916		014		2,452	
0(1	$L_{1} = P(1) = O(E_{1})$	105,2 (3)		031		3,872		051		2,443	
0(1	D(E 1) - P(1) - O(E 12)	107,4 (3)		200	3,700	3,701	3,5	310		2,422	
0(1	$L_{2}^{2} - P(1) - O(E 11)$	112,3 (3)		112	3,459	3,459	2	240	2,399	2,399	6,5
0(1	$L_2) = P(1) = O(E(12))$	107,2 (3)		131	3,255	3,255	2	150		2,385	
0(1	P(1) = O(E12)	118,9 (4)		013	3,223	3,223	7	222	2,382	2,383	1
0(1	L1) - P(2) - O(L2)	102,3 (3)		032		3,215		142		2,370	
0(1	L1) - P(2) - O(E21)	106,3 (3)		220	3,190	3,191	11	024		2,324	
0(1	L1) - P(2) - O(E22)	109,3 (3)		040	3,149	3,149	32	043		2,289	
O(<i>1</i>	$L_{2}^{2} - P(2) - O(E_{21})$	108,3 (3)		122		3,124		133		2,273	
O(<i>l</i>	L_{2})P(2)O(<i>E</i> 22)	109,5 (3)		211		3,039		151		2,263	
O(A	E21)-P(2)-O(E22)	119,7 (4)		041		3,004		052		2,250	
				023		2,946		241	2,221	2,221	17,3
P(1)-O(L1)-P(2)	138,2 (4)		221	2.806	2,804	2	232		2,194	
P(1)-O(L2)-P(2)	134,5 (4)		132	2,732	2,732	5	311	2,188	2,187	2
				141	,	2,686					

00

11

01

12

02

03

20 11

13

01

03

22

04

12

21

04 02

22

13 14

04 11

03

20

21

Tableau 6. Distances interatomiques (Å) dans les environments des cations

Tableau 8. Dépouillement du diagramme de poudre de NdNH₄P₄O₁₂

Pr-O(E11)	2,487 (5)	$NH_4 - O(L1)$	3,061 (11)
Pr-O(E12)	2,444 (7)	$NH_4 - O(E11)$	2,993 (8)
Pr-O(E21)	2,475 (7)	$NH_4 - O(E22)$	2,834 (10)
PrO(E22)	2,469 (6)	•	

parallèles au plan ab. Ils sont centrosymétriques. Ils déterminent un voisinage de huit atomes d'oxygène autour de Pr³⁺ et de six atomes d'oxygène autour de NH⁺. La figure de coordination du praséodyme est un dodécaèdre et celle de l'ion ammonium un octaèdre. Ces figures de coordination se joignent par leurs sommets et leurs arêtes pour former des enchaînements indépendants bidimensionnels aux cotes 0,25 et 0,75. La Fig. 1 montre une projection ab de la structure. Les Tableaux 4, 5 et 6 donnent les distances interatomiques et angles des liaisons.

Les distances interatomiques des cations Pr³⁺ à l'intérieur d'un même site sont respectivement: 6,14; 6,33; 7,46 et 10,97 Å.

Le voisinage d'oxygène de la terre rare Pr³⁺ et les distances interatomiques 'terre rare'-oxygène sont comparables à celles trouvées par Hong (1975a,b) dans les polyphosphates NdLi(PO₃)₄ et NdK(PO₃)₄.

Mailles cristallines de PrNH₄P₄O₁₂ et NdNH₄P₄O₁₂

Elles ont été déterminées à l'aide d'une chambre de Guinier, à la longueur d'onde λ (Fe $K\alpha$) = 1,9373 Å.

L'analogie des diagrammes de poudre obtenus montre que $NdNH_4P_4O_{12}$ est isotype de $PrNH_4P_4O_{12}$: a = 7,909 (8), 7,881 (8): b = 12,60(1), 12,55(1); c = 10,68(1), 10,65(1)Å: et $\beta = 110,56 (10), 110,80 (10)^{\circ}$ pour PrNH₄P₄O₁₂ et $NdNH_4P_4O_{12}$ respectivement.

Les Tableaux 7 et 8 sont les dépouillements des diagrammes de poudre des deux composés.

1	$d_{\rm obs}$	$d_{\rm calc}$	I obs	h k l	d_{obs}	$d_{\rm calc}$	$I_{\rm obs}$
1		7,80		231		2.498	
0		6,35		004		2,489	
0	6,28	6,28	100	123		2,472	
1	5,31	5,31	26	014		2,441	
2		4,98		051		2,434	
1	4,74	4,74	8	310		2,410	
2	4,63	4,63	12	240	2,389	2,389	
1		3,966		150	2,376	2,376	5
2		3,900		222		2,369	
1		3,857		142		2,359	
0	3,684	3,684	6	024		2,314	
2	3,440	3,440	22	043		2,280	
1	3,239	3,239	29	133		2,262	
3	3,208	3,208	5	151		2,254	
2		3,203		052		2,241	
0	3,177	3,177	2,5	241		2,210	
0	3,138	3,138	58	232		2,183	
2		3,108		311		2,175	
1		3,022		034		2,139	
1		2,993		330		2,118	
3		2,934		114		2,108	
1	2,789	2,789	2,5	060	2,092	2,092	5
2	2,719	2,719	2	213		2,090	
1		2,675		321		2,084	
2	2,654	2,654	5	152		2,055	
3		2,629		061		2,047	
3		2,600		143		2,042	
2		2,558		124		2,024	
2		2,507		223	2,008	2,008	2

Références

HONG, Y. P. H. (1975a). Mater. Res. Bull. 10, 635-640. HONG, Y. P. H. (1975b). Mater. Res. Bull. 10, 1105-1110. PREWITT, C. T. (1966). SFLS-5. Oak Ridge National Laboratory Report ORNL-TM-305.